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A B S T R A C T   

Novel (Mg0.2Ni0.2Zn0.2Co0.2Mn0.2)2SiO4 (A5SO) high-entropy microwave dielectric ceramics with olivine struc
ture were prepared in the sintering temperature range of 1100 ◦C–1300 ◦C via the solid-phase reaction route. The 
crystal structure was confirmed by XRD, Raman, and Rietveld refinement. Optimal microwave dielectric prop
erties (εr = 8.02, tanδ = 0.00051 at 14.5 GHz, and τf = − 38.2 ppm/◦C) were obtained at the sintering tem
perature of 1250 ◦C, where a relative density of 95.1% was detected. The complex chemical bonding theory 
manifests that the εr value of A5SO is mainly affected by the ionicity of A-O (A = Mg, Ni, Zn, Co, Mn) bond, while 
the dielectric loss is affected by both A-O and Si–O lattice energy. The τf value is mainly influenced by the [A(2) 
O6] oxygen octahedral distortion (1.8 × 10− 3). The experimental results of this study provide both theoretical 
and practical guidance for high-entropy microwave dielectric ceramic applications.   

1. Introduction 

Microwave dielectric ceramics play an important role in wireless 
communication technology. The 5G/6G communication technology 
with greater capacity and shorter delay has put more stringent re
quirements on microwave dielectric ceramics performance. Typically, 
dielectric materials applied for high frequency need to have a low 
relative permittivity (εr ˂ 15), low dielectric loss, and a near-zero tem
perature coefficient of resonance frequency τf [1–3]. Currently, It was 
reported that aluminates, borates, phosphates, molybdates, tungstates, 
and silicates usually possess low relative permittivity and low dielectric 
loss [4–12], but their inferior thermal stability limit their applications. 

Recently, high Entropy Alloys (HEAs) have gradually become one of 
the solutions for designing materials with high performance more in line 
with the demand of the materials industry. The concept of high-entropy 
comes from the HEAs proposed in 2004, which is a single-phase solid 
solution formed by five or more metallic elements in one equimolar ratio 
[13,14]. The high-entropy, lattice distortion, hysteresis-diffusion, and 
cocktail effects are introduced to enhance its performance [15,16]. 
Therefore, studies on high-entropy ceramics, high-entropy glasses, 
high-entropy polymers were carried out [17,18]. According to the Gibbs 

free energy expression:  

G = H-TS                                                                                      (1) 

where G is Gibbs free energy, H is enthalpy, T is temperature, and S is 
entropy. Materials with high entropy values are more stable at high 
temperatures [19,20]. Accordingly, the concept of high entropy is 
introduced into microwave dielectric ceramics for higher performance. 
A2BO4 (A = Mg, Zn, Ca; B=Si, Ge) with olivine structure has been widely 
studied as a representative of low permittivity families. Its derivative, 
LiABO4 (A = Mg, Zn, Ca, Ln; B=Si, Ge), has also shown excellent 
dielectric properties [21–29]. Currently, Xiang et al. reported promising 
properties in Li(Gd0.2Ho0.2Er0.2Yb0.2Lu0.2)GeO4 high-entropy micro
wave dielectric ceramics with rhombohedral olivine structure: εr = 7.2, 
tanδ = 0.00053, and τf = − 2.9 ppm/◦C [30]. Subsequent addition of 3 wt 
% H3BO3 as a sintering aid contributed to a reduced sintering temper
ature of 900 ◦C. However, its high preparation cost hinders its practical 
application. In contrast, olivine structured A2SiO4, is a low-cost solution 
and has significant advantages in realizing practical applications. 

In this study, (Mg0.2Ni0.2Zn0.2Co0.2Mn0.2)2SiO4 (A5SO) microwave 
dielectric high-entropy ceramics were prepared by the solid-phase 
method. The relationship between he crystal structure and properties 
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was investigated. It is expected that this study could provide theoretical 
and practical guidance for the high-entropy microwave dielectric 
ceramics. 

2. Experimental 

A5SO high-entropy ceramics were prepared from SiO2 (Aladdin, 
99%), MgO (Aladdin, 98%), NiO (Aladdin, 99%), ZnO (Aladdin, 99%), 
CoO (Aladdin, 99%), and MnO (Aladdin, 99.5%) by solid-phase reaction 
route. The flow diagram of preparation process is shown in Fig. 1. The 
raw materials were weighed according to the stoichiometric ratio and 
placed in a ball mill jar, and then ball milled in deionized water for 10 h 
(grinding media: zirconia balls). The dried powders were sieved at 120 
mesh and placed in a muffle furnace for calcination at 900 ◦C for 6 h. 
Then the calcined powders were secondly ball-milled for 6 h, dried, and 
added 8 wt% polyvinyl alcohol aqueous solution (PVA) as a binder, and 
the powders were pressed into a cylindrical billet with a thickness of 5–6 
mm and a diameter of 12 mm under the pressure of 10 MPa. Finally, the 
raw blanks were held at 500 ◦C for 2 h to exclude PVA and then heated 
up to 1100–1300 ◦C for 8 h of sintering in the air. 

The crystal structure of prepared ceramics were analyzed through X- 
ray diffraction (XRD, Miniflex600, Rigaku, Japan) with Cu-Kα radiation 
from 10 to 90◦ at a step size of 0.02◦. Raman spectroscopy was per
formed with a Raman microscope (InVia, Renishaw, UK) using an argon 
ion laser (λ = 532 nm) as the excitation light. Scanning electron mi
croscopy (SEM, Phenom, Pharos, Netherlands) was used to observe the 
microscopic morphology. The apparent density was measured using the 
Archimedes method. A vector network analyzer (Agilent N5230A, Agi
lent Technologies, USA) was used to measure the microwave dielectric 
properties in TE011 mode using the Hakki-Coleman dielectric resonator 

method [31]. The resonant frequencies at different temperatures were 
calculated to obtain τf with the following eq. 

τf =
f80 − f20

(T80 − T20) × f20
× 106 ppm

/◦

C (2)  

where f80 and f20 correspond to the resonant frequencies at 80 ◦C and 
20 ◦C, respectively. 

3. Results and discussion 

Fig. 2(a) shows the XRD patterns of A5SO high-entropy ceramics 
sintered at different sintering temperatures. Comparing the character
istic peaks with olivine-type Mg2SiO4 (PDF#78–1371), Co2SiO4 
(PDF#84–1298) and Mn2SiO4 (PDF#74–0716), it is indicated that the 
characteristic peaks of olivine-type A5SO high-entropy ceramics (space 
group: Pbnm, 62) lie between the characteristic peaks of Mg2SiO4 and 
Co2SiO4. Since the A5SO high entropy ceramics contain equimolar ratios 
of Mg2+ (ionic radius r = 0.72 Å), Ni2+ (r = 0.69 Å), Zn2+ (r = 0.74 Å), 
Co2+ (r = 0.745 Å), Mn2+ (r = 0.83 Å), which results in a variation of the 
lattice parameters. To further determine the lattice parameters of the 
A5SO high-entropy ceramics, the XRD data sintered at 1250 ◦C for 8 h 
were refined by Rietveld refinement using FULLPROF software, and the 
results are plotted in Fig. 2(b). The fitted curves agree well with the 
experimental data. The goodness of fit of refinement, which is defined as 
the ratio of Rwp to Rexp, is 1.81. Table 1 lists the refined lattice param
eters and the corresponding theoretical densities of A5SO, as well as the 
data obtained from the PDF standard cards and literature for A2SiO4 (A 
= Mg, Ni, Co, Zn, Mn). The lattice parameters of A5SO calculated by 
Rietveld refinement are: a = 4.7762 Å, b = 10.3609 Å, c = 6.0384 Å, and 

Fig. 1. Flow chart of the solid phase preparation of high-entropy microwave dielectric ceramics.  
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α = β = γ = 90◦, and its theoretical density is 4.377 g/cm3. The crystal 
structure of olivine-type A5SO is shown in Fig. 2(c), which is consistent 
with Mg2SiO4 [32]. It consists of [SiO4] tetrahedra and [A(1/2)O6] (A =
Mg, Ni, Co, Zn, Mn) octahedra, with Mg, Ni, Co, Zn, and Mn occupying 
the A site uniformly and randomly. The adjacent A(1)O6 octahedral 
units share the oxygen edges of the adjacent octahedra to form chains, 
while the A(2)O6 octahedral units form networks by sharing oxygen 
atoms from the adjacent octahedra. Isolated [SiO4] tetrahedra is 

surrounded by [A(1/2)O6] octahedra, occupying positions with two 
different symmetries. 

Raman spectroscopy is an effective method to reflect the phase 
structure, cation distribution, and defects via detecting the bond vibra
tion characteristics. Fig. 2(d) illustrates the Raman spectra of A5SO at 
different sintering temperatures. The theoretical spectral number of 
Mg2SiO4 with the space group of Pbnm is 36, A5SO high-entropy ce
ramics with the same space group also show similar Raman vibrational 

Fig. 2. (a) XRD Patterns of A5SO high-entropy ceramics at different sintering temperatures, (b) Rietveld refinement pattern of A5SO high-entropy ceramic sintered at 
1250 ◦C for 8 h, (c) schematic diagram of the crystal structure of A5SO high-entropy ceramics, and (d) Raman spectra of A5SO high-entropy ceramic sintered at 
1250 ◦C for 8 h. 

Table 1 
Refined lattice parameters of A5SO and the corresponding theoretical density, as well as the data of A2SiO4 (A = Mg, Ni, Co, Zn, Mn) obtained from the PDF standard 
card and reference.  

Material a (Å) b (Å) c (Å) α (◦) V (Å3) Structure d (g/cm3) Source 

Mg2SiO4 4.7550 10.1960 5.9809 90 290.0 Orthorhombic 3.222 PDF#-78-1371 
Ni2SiO4 4.7750 10.2160 5.9710 90 291.3 Orthorhombic 4.777 PDF#83-1740 
Co2SiO4 4.7810 10.2960 5.9980 90 295.3 Orthorhombic 4.722 PDF#84-1298 
Zn2SiO4 4.7900 10.3000 6.0200 90 297.0 Orthorhombic 4.683 [33] 
Mn2SiO4 4.9023 10.5964 6.2567 90 325.0 Orthorhombic 4.126 PDF#74-0716 
A5SO 4.7762 10.3609 6.0384 90 298.8 Orthorhombic 4.377 This work  
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modes [34,35]. The characterization results display that only 10 Raman 
diffraction peaks are detected for the A5SO high-entropy ceramics. The 
actual measured spectral number of Raman modes were less than the 
theoretical number due to factors such as low intensity, peak overlay, 
background, and overtone that affect the properties at a given frequency 
[36]. The Raman characteristic peaks located between 200 and 550 
cm− 1 are generated by the A-O (A = Mg, Ni, Co, Zn, Mn) translational 
vibrations and the translational, bending, and rotational vibrations of 
the [SiO4] tetrahedra. The Raman peaks at 800-1000 cm− 1 is generated 
by the stretching vibration of SiO4 tetrahedra. Located at 1130 cm− 1 is 
generated via the Si–O–Si vibration. The Raman spectroscopy results 
also verify the successful preparation of A5SO high-entropy ceramics. 

3(a)-(e) show the microscopic morphology of the A5SO high-entropy 
ceramics at different sintering temperatures. The grain size increases 
gradually with the increase of the sintering temperature, which is one of 
the reasons for promoting the densification of the samples. Fig. 3(f) plots 
the apparent density and relative density of the samples with sintering 
temperature. Their apparent density and the relative density first in
crease and then decrease with the growth of sintering temperature. The 
maximum relative density (95.1%) was obtained after sintering of the 
A5SO high-entropy ceramic at 1250 ◦C, the corresponding apparent 
density is 4.161 g/cm3. 

Fig. 4(a) demonstrates the variation in εr of the A5SO high-entropy 
ceramic with the sintering temperature. When the sintering tempera
ture increases from 1100 ◦C to 1250 ◦C, the εr value increases from 6.50 
to 8.02. It drops to 7.63 when the sintering temperature reaches 
1300 ◦C. The variation trend of εr is consistent with the denseness. Ac
cording to the Bosman-Havinga eq. 

εcorr. = εr(1+ 1.5p) (3) 

Among them, εcorr. is the corrected permittivity, p is the fractional 
porosity, and the porosity will affect εr [36,37]. The εcorr. is 8.61 for the 
A5SO high-entropy ceramic sintered at 1250 ◦C, and the correction 
value is higher than the measured value. Shannon proposed that the 
ionic polarizability affects the permittivity and that the molecular 

polarizability (α) of the compound can be estimated by summing ionic 
polarizability over the constituent ions [38]. A5SO high-entropy ce
ramics is calculated as follows: 

αA5SO = (αMg2+ + αNi2+ + αCo2+ + αZn2+ αMn2+ ) × 0.2 × 2 + αSi4+ 4αO2−

= 12.462 Å
3

(4)  

where the ionic polarizabilities of Mg2+, Ni2+, Co2+, Zn2+, Mn2+, Si4+, 
and O2− are 1.32 Å3, 1.23 Å3, 1.65 Å3, 2.04 Å3, 2.64 Å3, 0.87 Å3, and 
2.01 Å3, respectively [38]. The theoretical permittivity (εth.) was 
calculated by the Clausius-Mosotti (C-M) eq. with the following [39]: 

εth. =
3V + 8πα
3V − 4πα (5)  

where V is the volume of a single A5SO particle cell, V = 298.8/4 = 74.7 
Å3. The calculated εr is 7.96, which is very close to the actual measured 
value (εr = 8.02, 1250 ◦C sintering). This also reaffirms the successful 
preparation of A5SO high-entropy dielectric ceramics. 

The complex chemical bonding theory (P–V-L theory) allows the 
calculation of the magnitude of the bond ionicity (fi), and thus the 
inferring the contribution of different chemical bonds to the εr. The 
crystal structure of A5SO high-entropy ceramics needs to be decom
posed as the sum of the diatomic expression AmBn (A is the cation and B 
is the anion) to implement the PVL theory calculation [40,41].  

A5SO = A(1)1/3O(1)1/2 + A(1)1/3O(2)1/2 + A(1)1/3O(3)1/2 + A(2)1/6O(1)1/4 +

A(2)1/6O(2)1/4 + A(2)1/3O(3)1
1/2 + A(2)1/3O(3)2

1/2 + Si1/4O(1)1/4 + Si1/4O(2)1/4 
+ Si1/2O(3)1/2                                                                                 (6) 

The bond ionicity (fμ
i ) of u chemical bonds can be calculated by the 

following eqs: 

f μ
i =

(Cμ)
2

(Eμ
g)

2 (7) 

Fig. 3. (a)–(e) are the SEM images of A5SO high-entropy ceramics at different sintering temperatures, and (f) are the apparent densities and relative densities at 
different sintering temperatures. 
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(Eμ
g)

2
= (Eμ

h)
2
+ (Cμ)

2 (8)  

(Eμ
h)

2
=

39.74
(dμ)

2.48 (9)  

Cμ = 14.4bμe(− kμ
s rμ

o )[
(Zμ

A)
*

rμ
o

−
n
m

(Zμ
B)

*

rμ
o

], n ≥ m (10)  

where, Eμ
g is the average energy gap between the molecular orbital and 

the antibonding molecular orbital, and Eμ
h, Cμ represent the homopolar 

and heteropolar parts of the energy gap, respectively. dμ is the bond 
length of the chemical bond of μ, and bμ is the correction factor. exp(−
kμ

s rμ
o) is the Thomas-Fermi shielding factor, and (Zμ

A)
*, (Zμ

B)
* represent the 

effective valence electron numbers of A, B [37]. In addition, the 

calculation formula of each parameters in the relevant eq. (10) are listed 
in SI (Supplementary Information). The ionicity of the different chemi
cal bonds in A5SO high-entropy ceramics is shown in Fig. 4(b) (detailed 
values are listed in Table S1 in SI), and the ionicity values of the A-O 
bonds account for the major part of the ionicity of the chemical bonds. 
Therefore, the εr of A5SO high-entropy ceramics is mainly influenced by 
the ionicity of the A-O bond. 

Fig. 4(c) shows the variation of dielectric loss with sintering tem
perature, which follows the same trend as εr, reaching the lowest value 
of 0.00051 at 1250 ◦C (at 14.5 GHz). The A5SO high-entropy ceramics 
did not generate heterogeneous phases, and the effect of the heteroge
neous phase on dielectric loss is not considered. The A5SO ceramics 
sintered at 1100 ◦C, 1150 ◦C, 1200 ◦C, and 1300 ◦C showed higher 
dielectric loss due to their densities below 95%. The specific dielectric 
loss values for all samples are listed in Table 2. Density and 

Fig. 4. The variation patterns of (a) permittivity, (c) dielectric loss, and (e) τf with sintering temperature for A5SO high-entropy ceramics. (b) The chemical bond 
ionicity, (d) calculated lattice energy, and (f) schematic diagram of oxygen octahedra of A5SO high-entropy ceramics sintered at 1250 ◦C for 8 h. 
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heterogeneous phases, which are factors affecting dielectric loss values, 
are negligible for samples with densities higher than 95%. The effect of 
the binding capacity of cations and oxygen ions on microwave dielectric 
loss can be analyzed using lattice energy [42]. If the crystal has high 
binding energy, the intrinsic loss will be reduced. The calculation 
equation is as follows: 

Ucal =
∑

μ
(Uμ

bc + Uμ
bi) (11)  

Uμ
bc = 2100m

(Zμ
+)

1.64

(dμ)
0.75 f μ

c (12)  

Uμ
bi = 1270

(m + n)Zμ
+Zμ

−

dμ (1 −
0.4
dμ )f

μ
i (13) 

Uμ
bi, U

μ
bc are the lattice energies of ionic and covalent contributions, 

respectively. Zμ
+, Zμ

− denote the chemical bonding valence presented by 
cations and anions in the chemical bond μ. The calculated results are 
plotted in Fig. 4(d), and the specific lattice energy values are listed in 
Table S1. The results illustrate that the stacking lattice energies of the A- 
O and Si–O bonds are similar, indicating that both affect the dielectric 
loss of A5SO. 

Fig. 4(e) shows the variation of τf value with sintering temperature 
for A5SO high-entropy ceramics. The best τf value is exhibited with 
− 38.2 ppm/◦C at 1250 ◦C as with the variation of εr and dielectric loss. 
The τf of most microwave dielectric ceramics is affected by their crystal 
structure, especially the oxygen octahedral distortion [30,43]. The 
distortion of the [AO6] octahedron is caused by the random occupation 
of the a-site of the A5SO high-entropy ceramic by five atoms of Mg, Ni, 
Co, Zn, and Mn. The octahedral distortion (Δocta.) is calculated by the 
following eq. 

△octa. =
1
6
∑

i
(
Ri− o − Rav.

Rav.
)

2 (14)  

where Ri− o is the bond length of the i-O bond, and Rav. is the average 
bond length. The aberrations were calculated for the [A(1)O6] octahe
dron and the [A(2)O6] octahedron, and the results are listed in Table 3. 
The structures of the two types of oxygen octahedra are schematically 
plotted in Fig. 4(f), and the specific key length information can be ob
tained from it. At the same time, Table 3 also counts some of the oxygen 
octahedra distortion information with the numerical magnitude of τf. It 
is obvious that the value of τf is almost zero for materials with little 
oxygen octahedral distortion based on the comparison results. The A5SO 
ceramics has a relatively significant degree of [A(2)O6] oxygen octa
hedral distortion in this study, which leads to a τf value of − 38.2 ppm/ 
◦C. Overall, the introduction of the high entropy concept improves the 
stability of the structure and reduces the degree of oxygen octahedral 
distortion. 

4. Conclusions 

In this study, (Mg0.2Ni0.2Zn0.2Co0.2Mn0.2)2SiO4 high-entropy dielec
tric ceramics were prepared via the solid-phase method. The phase 
structure, vibrational properties, microscopic morphology, and chemi
cal bonding properties of (Mg0.2Ni0.2Zn0.2Co0.2Mn0.2)2SiO4 high- 

entropy dielectric ceramics were analyzed by XRD, Raman, SEM-EDX, 
and complex chemical bonding theory concerning their dielectric 
properties. The results show that the best dielectric properties (εr is 8.02, 
dielectric loss is 0.00051 at 14.5 GHz, and τf is − 38.2 ppm/◦C) were 
obtained by sintering at 1250 ◦C for 8 h. According to the complex 
chemical bonding theory, it is known that the εr of A5SO high-entropy 
ceramic is mainly affected by the A-O bonding, while the dielectric 
loss is affected by both A-O and Si–O, due to the close lattice energy of 
both. Due to the relatively large distortion parameters of the [A(2)O6] 
oxygen octahedron, which makes the τf of this high-entropy ceramic 
− 38.2 ppm/◦C. 
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